基于Matlab的数字全息相位展开及再现实现

一、核心流程设计

数字全息相位展开及再现的关键步骤包括:全息图生成、相位展开、衍射重建、后处理优化


二、关键参数定义

% 基本参数
lambda = 632.8e-6;    % 波长(mm)
k = 2*pi/lambda;      % 波数
z = 0.3;              % 记录距离(mm)
pix_size = 8e-3;      % 像素尺寸(mm)
N = 1024;             % 全息图分辨率
L = N*pix_size;       % 全息图尺寸(mm)

三、全息图生成与相位编码

  1. 物光场生成

    加载目标图像并转换为复振幅分布:

    obj = imread('lena.jpg');
    obj_gray = rgb2gray(obj);
    [M,N] = size(obj_gray);
    obj_amp = im2double(obj_gray)/255;  % 振幅分布
    obj_phase = 2*pi*rand(M,N);         % 随机相位分布
    
  2. 全息图记录

    通过角谱法计算全息图:

    % 物光场与参考光干涉
    H = exp(1j*k*z/(2*z)) * exp(-1j*pi*lambda*z/(2*z)*(ones(M,N)));  % 参考光
    hologram = obj_amp .* exp(1j*obj_phase) + H;  % 干涉场
    hologram = hologram ./ (abs(hologram) + eps);  # 归一化
    imwrite(abs(hologram), 'hologram.tif');       # 保存全息图
    

四、相位展开算法实现

采用最小二乘法相位解包处理包裹相位:

% 提取包裹相位
wrapped_phase = angle(hologram);

% 相位展开(最小二乘法)
[unwrapped_phase, ~] = lsq_unwrap(wrapped_phase, 2*pi);

% 可视化
figure;
subplot(1,2,1); imshow(wrapped_phase, []); title('包裹相位');
subplot(1,2,2); imshow(unwrapped_phase, []); title('展开相位');

关键函数 lsq_unwrap实现:

function [unwrapped, reliability] = lsq_unwrap(wrapped, pixel_size)
    % 输入:wrapped - 包裹相位(rad)
    % 输出:unwrapped - 展开相位(rad)
    [rows, cols] = size(wrapped);
    reliability = ones(rows, cols);
    
    % 构建线性方程组 Ax = b
    A = zeros(2*rows*cols, 2*rows*cols);
    b = zeros(2*rows*cols, 1);
    
    % 填充矩阵(基于相位梯度约束)
    k = 0;
    for i = 1:rows
        for j = 1:cols
            idx = (i-1)*cols + j;
            if i < rows
                A(2*idx-1,:) = [1, -exp(1j*k*pixel_size), 0, 0];
                b(2*idx-1) = wrapped(i,j) - wrapped(i+1,j);
            end
            if j < cols
                A(2*idx,:) = [1, 0, -exp(1j*k*pixel_size), 0];
                b(2*idx) = wrapped(i,j) - wrapped(i,j+1);
            end
        end
    end
    
    % 最小二乘求解
    x = A\b;
    unwrapped = reshape(x(1:2:end), rows, cols);
    reliability = abs(x(2:2:end));
end

五、衍射重建与再现

  1. 菲涅尔衍射重建

    使用S-FFT算法进行逆衍射计算:

    function recon = fresnel_reconstruct(hologram, z, lambda, pix_size)
        [N, ~] = size(hologram);
        k = 2*pi/lambda;
    
        % 预处理
        H = fftshift(fft2(hologram));
    
        % 频域传播因子
        fx = (-N/2:N/2-1)*(1/(N*pix_size));
        [FX, FY] = meshgrid(fx, fx);
        Hiz = exp(1j*k*z/(2*z)) .* exp(-1j*pi*lambda*z*(FX.^2 + FY.^2));
    
        # 逆变换
        recon = fftshift(ifft2(ifftshift(H .* Hiz)));
        recon = recon ./ (abs(recon) + eps);
    end
    
  2. 零级像消除

    采用Contourlet变换去除零级衍射斑:

    function clean_recon = remove_zero_order(recon)
        [c, s] = contourlet(recon, 'max_level', 3);
        c(1,:) = 0; c(2,:) = 0;  % 抑制低频分量
        clean_recon = icontourlet(c, s);
    end
    

参考代码 实现数字全息相位展开及再现 www.youwenfan.com/contentcnn/84714.html

六、完整重建流程

% 衍射重建
recon = fresnel_reconstruct(hologram, z, lambda, pix_size);

% 零级像消除
clean_recon = remove_zero_order(recon);

% 显示结果
figure;
subplot(1,2,1); imshow(abs(recon), []); title('原始重建像');
subplot(1,2,2); imshow(abs(clean_recon), []); title('去零级像后');

七、应用场景验证

  1. 三维物体重建

    对分层物体(如微结构芯片)进行层析重建:

    % 分层物体建模
    layers = load('microchip.mat');  % 包含各层相位信息
    for layer = 1:size(layers, 3)
        hologram_layer = generate_hologram(layers(:,:,layer));
        recon_layer = fresnel_reconstruct(hologram_layer, z, lambda, pix_size);
        figure; imshow(recon_layer); title(['Layer ', num2str(layer)]);
    end
    
  2. 动态过程监测

    结合高速相机实现实时相位变化追踪:

    % 模拟振动相位调制
    vibration_phase = 0.1*sin(2*pi*50*t);  % 50Hz振动
    hologram_vib = hologram .* exp(1j*vibration_phase);
    recon_vib = fresnel_reconstruct(hologram_vib, z, lambda, pix_size);
    

八、结果评估指标

% 计算重建质量指标
def calculate_metrics(original, recon):
    psnr = psnr(recon, original);
    ssim_val = ssim(recon, original);
    mae = mean(abs(recon(:) - original(:)));
    return psnr, ssim_val, mae

original = imread('reference.png');
metrics = calculate_metrics(original, recon_clean);
disp(['PSNR: ', num2str(metrics(1)), ' dB']);
disp(['SSIM: ', num2str(metrics(2))]);
disp(['MAE: ', num2str(metrics(3))]);

九、扩展应用方向

  1. 多波长融合

    结合RGB三波长全息图提升色彩保真度:

    % 多波长重建
    lambda_red = 650e-6;  lambda_green = 532e-6;  lambda_blue = 450e-6;
    recon_red = fresnel_reconstruct(hologram_red, z, lambda_red, pix_size);
    recon_green = fresnel_reconstruct(hologram_green, z, lambda_green, pix_size);
    recon_blue = fresnel_reconstruct(hologram_blue, z, lambda_blue, pix_size);
    recon_rgb = cat(3, recon_red, recon_green, recon_blue);
    
  2. 深度学习增强

    使用U-Net网络优化相位解包过程:

    % 加载预训练模型
    net = load('phase_unwrap_unet.mat');
    unwrapped_phase = predict(net, wrapped_phase);
    
posted @ 2025-12-10 10:33  徐中翼  阅读(4)  评论(0)    收藏  举报