Analytical Chemistry
the text will be hard
11.18 21:55 stop down here. too sleepy.
1. Analytical Fundamentals & Statistics
1.1. Moles and Concentration
-
Moles:
\[1 u = 1.66053906660×10^{−27} kg \]\[u×N_A = Da×N_A = MW = \frac{g}{mol} = 0.001\frac{kg}{mol} \]\[\text{Moles} = \frac{\text{grams}}{\text{formula weight (Molecular Weight, MW, g/mol)}} \quad (5.1) \] -
Molarity (M):
\[M = \frac{mol}{L} = \frac{mol}{{dm}^3} = 0.001\frac{mol}{m^3} \]\[\text{Moles} = M \times \text{Liters} \quad (5.4) \]\[\text{Millimoles} = M \times \text{mL} \quad (5.5) \] -
Normality (N) & Equivalents:
potenzH: hydrogen ion concentration, pH. Soren Peter Lauritz Sorensen, a Denmark biochemist.
Acid-base reactions: H⁺ transfer = removal of electron from hydrogen
Redox(reduction oxidation) reactions: e⁻ transfer = movement of elementary charge
Precipitation: Ion formation = electron gain/loss
The fundamental unit of chemical change is the electron charge: e = 1.602 × 10⁻¹⁹ C
\[\text{Number of equivalents (eq)} = N_A × (\text{number of reactive units per molecule}) = \text{ 6.02214076×10²³ × Z }mol^{-1} \]there, Z is the number of reactive units per molecule, which is dimensionless. ()
\[\text{Number of equivalents (eq)} = \text{Normality (eq/L)} \times \text{Volume (L)} \quad (5.6) \]\[\text{Equivalent weight} = \frac{\text{Formula Weight}}{\text{number of reacting units (e.g., H⁺, e⁻)}} \]
1.2. Expression of Results
-
%
-
ppm parts per million
-
ppb parts per billion
-
ppt parts per trillion/thousand
\[\text{ppm(wt/vol)} = \frac{\text{wt solute(g)}}{\text{vol sample(mL)}} \times 10^6 \]
Avoid "ppm" entirely in reporting. Use explicit units.
1.3. Statistical Treatment of Data
- Standard Deviation (Sample):\[s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N-1}} \]
- Standard Deviation of the Mean:\[s_{\bar{x}} = \frac{s}{\sqrt{N}} \]
- Least-Squares Linear Calibration:\[y = mx + b \]\[m = \frac{\sum x_i y_i - [(\sum x_i \sum y_i)/n]}{\sum x_i^2 - [(\sum x_i)^2/n]} \quad ; \quad b = \bar{y} - m\bar{x} \]
2. Chemical Equilibrium & Thermodynamics
2.1. General Equilibrium
For a reaction: $ aA + bB \rightleftharpoons cC + dD $
2.2. Gibbs Free Energy & Equilibrium
2.3. Temperature Dependence (Clausius-Clapeyron form)
2.4. Activity and Ionic Strength
- Activity:\[a_i = C_i f_i \quad (6.17) \]where $ f_i $ is the activity coefficient.
- Ionic Strength (μ):\[\mu = \frac{1}{2} \sum C_i Z_i^2 \quad (6.18) \]
- Debye-Hückel Equation (Extended):\[-\log f_i = \frac{A Z_i^2 \sqrt{\mu}}{1 + B a_i \sqrt{\mu}} \quad (6.19b) \]
- Davies Modification:\[-\log f_i = 0.51 Z_i^2 \left( \frac{\sqrt{\mu}}{1 + \sqrt{\mu}} - 0.3\mu \right) \quad (6.21) \]

浙公网安备 33010602011771号