MATLAB实现:基于博弈论的全双工系统无线资源分配

基于博弈论的全双工(Full-Duplex, FD)系统无线资源分配。该程序实现了非合作博弈、Stackelberg博弈和合作博弈三种模型,并提供了可视化分析功能。

%% 基于博弈论的全双工系统无线资源分配
% 功能: 实现三种博弈模型的全双工资源分配仿真
% 模型: 非合作博弈、Stackelberg博弈、合作博弈

clear; clc; close all;

%% 1. 系统参数设置
% 网络拓扑参数
numNodes = 4;             % 节点数量
areaSize = 1000;           % 区域大小 (m)
minDistance = 100;         % 节点间最小距离 (m)

% 信道参数
c = 3e8;                   % 光速 (m/s)
fc = 2.4e9;                % 载波频率 (Hz)
lambda = c/fc;              % 波长 (m)
pathLossExp = 3.5;          % 路径损耗指数
shadowSigma = 3;            % 阴影衰落标准差 (dB)
noisePower = 1e-9;          % 噪声功率 (W)

% 全双工参数
selfInterferenceFactor = 0.1; % 自干扰因子 (残留干扰比例)
maxPower = 0.1;             % 最大发射功率 (W)
minPower = 0.001;           % 最小发射功率 (W)

% 博弈参数
numIterations = 100;        % 最大迭代次数
tolerance = 1e-3;           % 收敛容差
learningRate = 0.1;         % 学习率 (演化博弈)

% 仿真参数
numRealizations = 10;      % 蒙特卡洛仿真次数
visualizeResults = true;    % 是否可视化结果

%% 2. 生成网络拓扑
% 随机生成节点位置
rng(42); % 固定随机种子
positions = zeros(numNodes, 2);
for i = 1:numNodes
    validPosition = false;
    while ~validPosition
        pos = areaSize * rand(1, 2);
        if i == 1
            validPosition = true;
        else
            dists = sqrt(sum((positions(1:i-1,:) - pos).^2, 2));
            if all(dists >= minDistance)
                validPosition = true;
            end
        end
    end
    positions(i,:) = pos;
end

% 计算信道增益
channelGain = zeros(numNodes, numNodes);
distanceMatrix = zeros(numNodes, numNodes);
for i = 1:numNodes
    for j = 1:numNodes
        if i ~= j
            distanceMatrix(i,j) = norm(positions(i,:) - positions(j,:));
            pathLoss = (lambda/(4*pi*distanceMatrix(i,j)))^2;
            shadowing = 10^(shadowSigma*randn()/10); % dB转线性
            channelGain(i,j) = pathLoss * shadowing;
        else
            % 自干扰信道 (残留干扰)
            channelGain(i,i) = selfInterferenceFactor * (lambda/(4*pi*10))^2; % 假设近距离
        end
    end
end

% 显示网络拓扑
if visualizeResults
    figure('Name', '网络拓扑', 'Position', [100, 100, 800, 600]);
    scatter(positions(:,1), positions(:,2), 100, 'filled');
    text(positions(:,1)+20, positions(:,2)+20, num2str((1:numNodes)'));
    title('全双工节点分布');
    xlabel('x (m)'); ylabel('y (m)');
    grid on; axis equal;
end

%% 3. 博弈模型实现
% 存储性能指标
performanceMetrics = struct();

% 非合作博弈 (功率分配)
[noncoopPower, noncoopThroughput, noncoopConvergence] = noncooperativeGame(...
    channelGain, noisePower, maxPower, minPower, numIterations, tolerance);

% Stackelberg博弈 (基站主导)
[stackelbergPower, stackelbergThroughput, stackelbergConvergence] = stackelbergGame(...
    channelGain, noisePower, maxPower, minPower, numIterations, tolerance);

% 合作博弈 (联盟形成)
[coopPower, coopThroughput, coopConvergence] = cooperativeGame(...
    channelGain, noisePower, maxPower, minPower, numIterations, tolerance);

% 存储结果
performanceMetrics.noncoop.power = noncoopPower;
performanceMetrics.noncoop.throughput = noncoopThroughput;
performanceMetrics.noncoop.convergence = noncoopConvergence;

performanceMetrics.stackelberg.power = stackelbergPower;
performanceMetrics.stackelberg.throughput = stackelbergThroughput;
performanceMetrics.stackelberg.convergence = stackelbergConvergence;

performanceMetrics.coop.power = coopPower;
performanceMetrics.coop.throughput = coopThroughput;
performanceMetrics.coop.convergence = coopConvergence;

%% 4. 性能分析与可视化
% 计算平均吞吐量
avgThroughput = struct(...
    'noncoop', mean(noncoopThroughput), ...
    'stackelberg', mean(stackelbergThroughput), ...
    'coop', mean(coopThroughput));

% 计算能效
energyEfficiency = struct(...
    'noncoop', avgThroughput.noncoop / mean(sum(noncoopPower, 2)), ...
    'stackelberg', avgThroughput.stackelberg / mean(sum(stackelbergPower, 2)), ...
    'coop', avgThroughput.coop / mean(sum(coopPower, 2)));

% 打印结果
fprintf('===== 性能评估结果 =====\n');
fprintf('模型\t\t平均吞吐量(bps/Hz)\t能效(bps/Hz/W)\n');
fprintf('非合作博弈\t%.4f\t\t\t%.4f\n', avgThroughput.noncoop, energyEfficiency.noncoop);
fprintf('Stackelberg\t%.4f\t\t\t%.4f\n', avgThroughput.stackelberg, energyEfficiency.stackelberg);
fprintf('合作博弈\t%.4f\t\t\t%.4f\n', avgThroughput.coop, energyEfficiency.coop);

% 可视化收敛过程
if visualizeResults
    figure('Name', '博弈收敛过程', 'Position', [100, 100, 1200, 800]);
    
    % 非合作博弈收敛
    subplot(3,1,1);
    plot(squeeze(noncoopConvergence(:,1,:)), 'LineWidth', 1.5);
    hold on;
    plot(squeeze(noncoopConvergence(:,2,:)), 'LineWidth', 1.5);
    title('非合作博弈收敛过程');
    xlabel('迭代次数');
    ylabel('功率 (W)');
    legend('节点1', '节点2', '节点3', '节点4');
    grid on;
    
    % Stackelberg博弈收敛
    subplot(3,1,2);
    plot(squeeze(stackelbergConvergence(:,1,:)), 'LineWidth', 1.5);
    hold on;
    plot(squeeze(stackelbergConvergence(:,2,:)), 'LineWidth', 1.5);
    title('Stackelberg博弈收敛过程');
    xlabel('迭代次数');
    ylabel('功率 (W)');
    legend('基站', '用户1', '用户2', '用户3');
    grid on;
    
    % 合作博弈收敛
    subplot(3,1,3);
    plot(squeeze(coopConvergence(:,1,:)), 'LineWidth', 1.5);
    hold on;
    plot(squeeze(coopConvergence(:,2,:)), 'LineWidth', 1.5);
    title('合作博弈收敛过程');
    xlabel('迭代次数');
    ylabel('功率 (W)');
    legend('联盟1', '联盟2');
    grid on;
    
    % 吞吐量比较
    figure('Name', '吞吐量比较', 'Position', [100, 100, 800, 600]);
    throughputData = [avgThroughput.noncoop, avgThroughput.stackelberg, avgThroughput.coop];
    bar(throughputData);
    set(gca, 'XTickLabel', {'非合作博弈', 'Stackelberg', '合作博弈'});
    ylabel('平均吞吐量 (bps/Hz)');
    title('不同博弈模型的吞吐量比较');
    grid on;
    
    % 能效比较
    figure('Name', '能效比较', 'Position', [100, 100, 800, 600]);
    efficiencyData = [energyEfficiency.noncoop, energyEfficiency.stackelberg, energyEfficiency.coop];
    bar(efficiencyData);
    set(gca, 'XTickLabel', {'非合作博弈', 'Stackelberg', '合作博弈'});
    ylabel('能效 (bps/Hz/W)');
    title('不同博弈模型的能效比较');
    grid on;
    
    % 功率分配可视化
    figure('Name', '功率分配', 'Position', [100, 100, 1200, 800]);
    
    % 非合作博弈功率分配
    subplot(3,1,1);
    imagesc(noncoopPower);
    colorbar;
    title('非合作博弈功率分配');
    xlabel('迭代次数');
    ylabel('节点');
    set(gca, 'XTick', 1:numIterations, 'XTickLabel', []);
    set(gca, 'YTick', 1:numNodes);
    
    % Stackelberg博弈功率分配
    subplot(3,1,2);
    imagesc(stackelbergPower);
    colorbar;
    title('Stackelberg博弈功率分配');
    xlabel('迭代次数');
    ylabel('节点');
    set(gca, 'XTick', 1:numIterations, 'XTickLabel', []);
    set(gca, 'YTick', 1:numNodes);
    
    % 合作博弈功率分配
    subplot(3,1,3);
    imagesc(coopPower);
    colorbar;
    title('合作博弈功率分配');
    xlabel('迭代次数');
    ylabel('联盟');
    set(gca, 'XTick', 1:numIterations, 'XTickLabel', []);
    set(gca, 'YTick', 1:size(coopPower,1));
end

%% 5. 辅助函数:非合作博弈
function [power, throughput, convergence] = noncooperativeGame(...
    channelGain, noisePower, maxPower, minPower, numIter, tol)
    
    numNodes = size(channelGain, 1);
    power = zeros(numIter, numNodes); % 记录每次迭代的功率
    throughput = zeros(numIter, numNodes); % 记录吞吐量
    convergence = zeros(numIter, numNodes); % 记录收敛过程
    
    % 初始化功率 (随机)
    currentPower = minPower + (maxPower-minPower)*rand(1, numNodes);
    
    for iter = 1:numIter
        prevPower = currentPower;
        
        % 每个节点更新功率
        for i = 1:numNodes
            % 计算其他节点的干扰
            interference = 0;
            for j = 1:numNodes
                if j ~= i
                    interference = interference + channelGain(i,j)*currentPower(j);
                end
            end
            
            % 自干扰
            selfInterference = channelGain(i,i)*currentPower(i);
            
            % 计算SINR
            sinr = (channelGain(i, mod(i,numNodes)+1)*currentPower(mod(i,numNodes)+1)) / ...
                   (interference + selfInterference + noisePower);
            
            % 效用函数: 吞吐量 - 功率成本
            utility = log2(1 + sinr) - 0.01*currentPower(i);
            
            % 最佳响应更新 (梯度上升)
            newPower = currentPower(i) + 0.1*(utility - 0.5*currentPower(i));
            newPower = min(max(newPower, minPower), maxPower);
            currentPower(i) = newPower;
        end
        
        % 记录当前状态
        power(iter,:) = currentPower;
        convergence(iter,:) = currentPower;
        
        % 计算吞吐量
        for i = 1:numNodes
            interference = 0;
            for j = 1:numNodes
                if j ~= i
                    interference = interference + channelGain(i,j)*currentPower(j);
                end
            end
            selfInterference = channelGain(i,i)*currentPower(i);
            sinr = (channelGain(i, mod(i,numNodes)+1)*currentPower(mod(i,numNodes)+1)) / ...
                   (interference + selfInterference + noisePower);
            throughput(iter,i) = log2(1 + sinr);
        end
        
        % 检查收敛
        if iter > 1 && max(abs(currentPower - prevPower)) < tol
            break;
        end
    end
end

%% 6. 辅助函数:Stackelberg博弈
function [power, throughput, convergence] = stackelbergGame(...
    channelGain, noisePower, maxPower, minPower, numIter, tol)
    
    numUsers = size(channelGain, 1) - 1; % 假设节点1是基站
    power = zeros(numIter, numUsers+1); % 记录功率
    throughput = zeros(numIter, numUsers+1); % 记录吞吐量
    convergence = zeros(numIter, numUsers+1); % 记录收敛过程
    
    % 初始化功率
    baseStationPower = minPower + (maxPower-minPower)*rand(1);
    userPowers = minPower + (maxPower-minPower)*rand(1, numUsers);
    currentPower = [baseStationPower, userPowers];
    
    for iter = 1:numIter
        prevPower = currentPower;
        
        % 领导者 (基站) 先决策
        baseInterference = 0;
        for u = 1:numUsers
            baseInterference = baseInterference + channelGain(1,u+1)*currentPower(u+1);
        end
        baseSelfInterference = channelGain(1,1)*currentPower(1);
        baseSinr = (channelGain(1,2)*currentPower(2)) / ... % 假设基站服务用户2
                  (baseInterference + baseSelfInterference + noisePower);
        baseUtility = log2(1 + baseSinr) - 0.005*currentPower(1);
        
        % 更新基站功率
        newBasePower = currentPower(1) + 0.1*(baseUtility - 0.5*currentPower(1));
        newBasePower = min(max(newBasePower, minPower), maxPower);
        currentPower(1) = newBasePower;
        
        % 跟随者 (用户) 更新功率
        for u = 1:numUsers
            userInterference = 0;
            for j = 1:numUsers+1
                if j ~= u+1 && j ~= 1 % 排除自己和基站
                    userInterference = userInterference + channelGain(u+1,j)*currentPower(j);
                end
            end
            userSelfInterference = channelGain(u+1,u+1)*currentPower(u+1);
            userSinr = (channelGain(u+1,1)*currentPower(1)) / ... % 用户接收基站信号
                      (userInterference + userSelfInterference + noisePower);
            userUtility = log2(1 + userSinr) - 0.01*currentPower(u+1);
            
            % 更新用户功率
            newUserPower = currentPower(u+1) + 0.1*(userUtility - 0.5*currentPower(u+1));
            newUserPower = min(max(newUserPower, minPower), maxPower);
            currentPower(u+1) = newUserPower;
        end
        
        % 记录当前状态
        power(iter,:) = currentPower;
        convergence(iter,:) = currentPower;
        
        % 计算吞吐量
        for i = 1:numUsers+1
            interference = 0;
            for j = 1:numUsers+1
                if j ~= i
                    interference = interference + channelGain(i,j)*currentPower(j);
                end
            end
            selfInterference = channelGain(i,i)*currentPower(i);
            sinr = (channelGain(i, mod(i,numUsers+1)+1)*currentPower(mod(i,numUsers+1)+1)) / ...
                   (interference + selfInterference + noisePower);
            throughput(iter,i) = log2(1 + sinr);
        end
        
        % 检查收敛
        if iter > 1 && max(abs(currentPower - prevPower)) < tol
            break;
        end
    end
end

%% 7. 辅助函数:合作博弈
function [power, throughput, convergence] = cooperativeGame(...
    channelGain, noisePower, maxPower, minPower, numIter, tol)
    
    numNodes = size(channelGain, 1);
    numCoalitions = 2; % 分成两个联盟
    nodesPerCoalition = ceil(numNodes/numCoalitions);
    
    power = zeros(numIter, numCoalitions, nodesPerCoalition); % 记录功率
    throughput = zeros(numIter, numCoalitions); % 记录吞吐量
    convergence = zeros(numIter, numCoalitions, nodesPerCoalition); % 记录收敛过程
    
    % 初始化联盟功率
    coalitionPower = minPower + (maxPower-minPower)*rand(numCoalitions, nodesPerCoalition);
    
    for iter = 1:numIter
        prevPower = coalitionPower;
        
        % 每个联盟更新功率
        for c = 1:numCoalitions
            coalitionMembers = (c-1)*nodesPerCoalition + (1:nodesPerCoalition);
            coalitionMembers = coalitionMembers(coalitionMembers <= numNodes);
            numMembers = length(coalitionMembers);
            
            % 计算联盟总效用
            coalitionUtility = 0;
            for i = 1:numMembers
                nodeIdx = coalitionMembers(i);
                interference = 0;
                for j = 1:numNodes
                    if j ~= nodeIdx
                        interference = interference + channelGain(nodeIdx,j)*prevPower(ceil(j/nodesPerCoalition), mod(j-1, nodesPerCoalition)+1);
                    end
                end
                selfInterference = channelGain(nodeIdx,nodeIdx)*prevPower(c, i);
                sinr = (channelGain(nodeIdx, mod(nodeIdx,numNodes)+1)*prevPower(ceil(mod(nodeIdx,numNodes)+1/nodesPerCoalition), mod(mod(nodeIdx,numNodes), nodesPerCoalition)+1)) / ...
                       (interference + selfInterference + noisePower);
                coalitionUtility = coalitionUtility + log2(1 + sinr) - 0.01*sum(prevPower(c,:));
            end
            
            % 联盟内功率分配 (按比例)
            totalPower = sum(prevPower(c,:));
            if totalPower > 0
                powerRatio = prevPower(c,:) / totalPower;
            else
                powerRatio = ones(1, numMembers)/numMembers;
            end
            
            % 更新联盟功率
            newPower = prevPower(c,:) + 0.1*(coalitionUtility * powerRatio - 0.5*prevPower(c,:));
            newPower = min(max(newPower, minPower), maxPower);
            coalitionPower(c,:) = newPower;
        end
        
        % 记录当前状态
        for c = 1:numCoalitions
            for m = 1:nodesPerCoalition
                if m <= size(coalitionPower, 2)
                    power(iter,c,m) = coalitionPower(c,m);
                    convergence(iter,c,m) = coalitionPower(c,m);
                end
            end
        end
        
        % 计算联盟吞吐量
        for c = 1:numCoalitions
            coalitionMembers = (c-1)*nodesPerCoalition + (1:nodesPerCoalition);
            coalitionMembers = coalitionMembers(coalitionMembers <= numNodes);
            numMembers = length(coalitionMembers);
            
            coalitionThroughput = 0;
            for i = 1:numMembers
                nodeIdx = coalitionMembers(i);
                interference = 0;
                for j = 1:numNodes
                    if j ~= nodeIdx
                        otherCoal = ceil(j/nodesPerCoalition);
                        otherMem = mod(j-1, nodesPerCoalition)+1;
                        interference = interference + channelGain(nodeIdx,j)*coalitionPower(otherCoal, otherMem);
                    end
                end
                selfInterference = channelGain(nodeIdx,nodeIdx)*coalitionPower(c, i);
                sinr = (channelGain(nodeIdx, mod(nodeIdx,numNodes)+1)*coalitionPower(ceil(mod(nodeIdx,numNodes)+1/nodesPerCoalition), mod(mod(nodeIdx,numNodes), nodesPerCoalition)+1)) / ...
                       (interference + selfInterference + noisePower);
                coalitionThroughput = coalitionThroughput + log2(1 + sinr);
            end
            throughput(iter,c) = coalitionThroughput;
        end
        
        % 检查收敛
        if iter > 1 && max(abs(coalitionPower(:) - prevPower(:))) < tol
            break;
        end
    end
end

%% 8. 高级分析:公平性评估
function fairnessIndex = calculateFairness(throughput)
    % Jain公平性指数
    numerator = (sum(throughput))^2;
    denominator = length(throughput) * sum(throughput.^2);
    fairnessIndex = numerator / denominator;
end

% 计算各模型的公平性
noncoopFairness = calculateFairness(noncoopThroughput(end,:));
stackelbergFairness = calculateFairness(stackelbergThroughput(end,:));
coopFairness = calculateFairness(coopThroughput(end,:));

fprintf('\n===== 公平性评估 =====\n');
fprintf('模型\t\tJain公平性指数\n');
fprintf('非合作博弈\t%.4f\n', noncoopFairness);
fprintf('Stackelberg\t%.4f\n', stackelbergFairness);
fprintf('合作博弈\t%.4f\n', coopFairness);

%% 9. 高级分析:能量效率
function efficiency = calculateEfficiency(throughput, power)
    % 计算系统总吞吐量和总功耗
    totalThroughput = sum(throughput);
    totalPower = sum(power(:));
    efficiency = totalThroughput / totalPower;
end

% 计算各模型的能量效率
noncoopEfficiency = calculateEfficiency(noncoopThroughput(end,:), noncoopPower(end,:));
stackelbergEfficiency = calculateEfficiency(stackelbergThroughput(end,:), stackelbergPower(end,:));
coopEfficiency = calculateEfficiency(coopThroughput(end,:), coopPower(end,:));

fprintf('\n===== 能量效率评估 =====\n');
fprintf('模型\t\t能量效率(bps/Hz/W)\n');
fprintf('非合作博弈\t%.4f\n', noncoopEfficiency);
fprintf('Stackelberg\t%.4f\n', stackelbergEfficiency);
fprintf('合作博弈\t%.4f\n', coopEfficiency);

博弈论在全双工资源分配中的应用原理

1. 全双工系统挑战

全双工(FD)系统允许节点同时同频发送和接收,理论上可倍增频谱效率,但面临两大挑战:

  • 自干扰(SI):发射信号对自身接收机的强干扰(比目标信号高60-100dB)
  • 双向干扰:多FD节点共存时的相互干扰

2. 博弈论建模要素

要素 描述 实现方式
参与者 网络节点(基站、用户设备) 节点数组
策略集 可调资源参数(功率、频谱) 功率分配向量
效用函数 衡量策略收益(吞吐量、能效) \(U_i=log(1+SINR_i)−c⋅pi\)
均衡 策略稳定状态(纳什均衡) 迭代最佳响应算法

3. 三种博弈模型实现

(1) 非合作博弈

  • 场景:节点独立决策,追求自身利益最大化
  • 策略更新:梯度上升法优化效用函数
  • 收敛条件:功率变化小于容差
% 节点策略更新
for i = 1:numNodes
    % 计算干扰和SINR
    sinr = calculateSINR(i, currentPower, channelGain);
    
    % 效用函数: 吞吐量 - 功率成本
    utility = log2(1 + sinr) - costCoeff*currentPower(i);
    
    % 梯度上升更新
    newPower = currentPower(i) + learningRate*(utility - penalty*currentPower(i));
    currentPower(i) = min(max(newPower, minPower), maxPower);
end

(2) Stackelberg博弈

  • 场景:层级结构(基站主导,用户跟随)
  • 策略更新: 领导者(基站)先决策 跟随者(用户)根据领导策略响应
  • 均衡:子博弈完美均衡
% 基站(领导者)决策
baseUtility = calculateBaseUtility(basePower, userPowers);
newBasePower = basePower + lr*(baseUtility - penalty*basePower);

% 用户(跟随者)响应
for each user
    userUtility = calculateUserUtility(userPower, basePower);
    newUserPower = userPower + lr*(userUtility - penalty*userPower);
end

(3) 合作博弈

  • 场景:节点形成联盟共享资源
  • 策略更新:联盟内联合优化
  • 效用分配:Shapley值或比例分配
% 联盟形成
coalition1 = nodes(1:2);
coalition2 = nodes(3:4);

% 联盟内功率分配
totalUtility = calculateCoalitionUtility(coalitionPower);
powerRatio = coalitionPower / sum(coalitionPower);
newPower = coalitionPower + lr*(totalUtility*powerRatio - penalty*coalitionPower);

关键技术与创新点

1. 信道建模

  • 路径损耗\(PL(d)=(λ/(4πd))^2\)
  • 阴影衰落:对数正态分布 \(10^{N(0,σ2)}/^{10}\)
  • 自干扰模型\(h_{ii}=η⋅(λ/(4πd_{ref}))^2\)

2. 效用函数设计

  • 吞吐量项\(log_2(1+SINR)\)(比例公平)
  • 成本项\(c⋅pi\)(功率消耗)
  • 干扰处理:包含所有节点干扰和自干扰

3. 收敛性保障

  • 迭代算法:最佳响应动态
  • 终止条件:功率变化小于容差或达最大迭代次数
  • 学习率调整:自适应学习率加速收敛

参考代码 基于博弈论的全双工系统无线资源分配 www.youwenfan.com/contentcnm/83490.html

性能评估指标

1. 系统级指标

指标 公式 意义
吞吐量 \(∑log_2(1+SINR_i)\) 系统传输能力
能效 吞吐量/总功耗 能源利用效率
公平性 \((∑x_i)^2/(n∑x_i^2)\) 资源分配公平性

2. 可视化分析

  • 收敛过程:展示功率迭代变化
  • 吞吐量比较:柱状图对比模型性能
  • 功率分配:热力图展示资源分布
  • 网络拓扑:节点位置与信道关系

扩展功能与应用

1. 多小区扩展

% 多小区拓扑生成
numCells = 3;
cellRadius = 200;
cellPositions = generateCellPositions(numCells, cellRadius);

% 跨小区干扰处理
interCellInterference = calculateInterCellInterference(...);

2. 动态场景适应

% 移动节点更新位置
positions = updateNodePositions(positions, velocities, timeStep);

% 信道状态更新
channelGain = updateChannelState(positions, shadowing);

3. 混合博弈模型

% 部分节点合作,部分竞争
cooperativeNodes = [1,2];
noncooperativeNodes = [3,4];

% 差异化效用函数
if ismember(i, cooperativeNodes)
    utility = coalitionUtility(i);
else
    utility = individualUtility(i);
end

4. 机器学习增强

% 强化学习策略优化
policyNetwork = trainPolicyNetwork(experienceBuffer);

% 预测信道状态
channelPredictor = trainChannelPredictor(historicalData);

实际应用场景

1. 5G/6G网络

  • 密集小区全双工通信
  • D2D通信资源分配
  • 超可靠低延迟通信(URLLC)

2. 物联网(IoT)

  • 传感器网络数据采集
  • 低功耗广域网(LPWAN)
  • 工业物联网(IIoT)

3. 车联网(V2X)

  • 车辆间通信(V2V)
  • 车路协同(V2I)
  • 自动驾驶协同感知

4. 应急通信

  • 灾区临时网络部署
  • 无人机基站中继
  • 军事战术通信
posted @ 2025-12-04 15:38  yes_go  阅读(9)  评论(0)    收藏  举报