认知无线网络中频谱感知和功率分配的多目标模因优化问题MATLAB实现
一、问题建模
1. 系统模型
classdef CRN_System < handle
properties
N_channels % 信道数量
N_users % 次级用户数量
T_frame % 帧时长
T_sensing % 感知时间
P_max % 最大发射功率
P_idle_threshold% 空闲检测阈值
noise_power % 噪声功率
channel_gains % 信道增益矩阵
PU_activity % 主用户活动概率
bandwidth % 信道带宽
interference_threshold % 干扰阈值
energy_weights % 能量权重(感知能耗)
end
end
2. 多目标优化问题
function objectives = multi_objective_function(x, system)
% 输入:x = [感知时间; 功率分配矩阵]
% 输出:目标向量 [吞吐量, 干扰, 能耗, 公平性]
% 解码变量
T_sensing = x(1);
power_matrix = reshape(x(2:end), system.N_channels, system.N_users);
% 计算各目标
throughput = compute_throughput(power_matrix, system, T_sensing);
interference = compute_interference(power_matrix, system);
energy = compute_energy_consumption(power_matrix, T_sensing, system);
fairness = compute_fairness_index(power_matrix, system);
% 最大化吞吐量和公平性,最小化干扰和能耗
objectives = [-throughput; % 转换为最小化问题
interference;
energy;
-fairness];
end
二、模因优化算法实现
1. 主算法框架
function [best_solution, pareto_front] = memetic_optimization(system, params)
% 初始化参数
pop_size = params.pop_size;
max_gen = params.max_gen;
crossover_rate = params.crossover_rate;
mutation_rate = params.mutation_rate;
local_search_rate = params.local_search_rate;
% 初始化种群
population = initialize_population(pop_size, system);
% 计算初始适应度
fitness = evaluate_population(population, system);
% Pareto前沿存储
pareto_front = [];
pareto_solutions = [];
for gen = 1:max_gen
% 1. 非支配排序和拥挤度计算
[fronts, ranks] = non_dominated_sort(fitness);
crowding_distances = crowding_distance(fitness, fronts);
% 2. 选择操作(锦标赛选择)
parents = tournament_selection(population, fitness, ranks, crowding_distances);
% 3. 遗传操作
offspring = genetic_operators(parents, crossover_rate, mutation_rate, system);
% 4. 局部搜索(模因算法的核心)
offspring = local_search(offspring, local_search_rate, system);
% 5. 合并种群
combined_pop = [population; offspring];
combined_fitness = [fitness; evaluate_population(offspring, system)];
% 6. 环境选择
[population, fitness] = environmental_selection(combined_pop, combined_fitness, pop_size);
% 7. 更新Pareto前沿
[current_pareto, current_solutions] = update_pareto_front(population, fitness);
% 8. 归档精英解
[pareto_front, pareto_solutions] = update_archive(pareto_front, pareto_solutions, ...
current_pareto, current_solutions);
% 显示进度
if mod(gen, 10) == 0
fprintf('Generation %d: Pareto front size = %d\n', gen, size(pareto_front, 1));
end
end
best_solution = select_best_solution(pareto_front, pareto_solutions, system);
end
2. 混合编码和初始化
function population = initialize_population(pop_size, system)
% 混合编码:连续变量(功率)+ 离散变量(信道选择)
population = cell(pop_size, 1);
for i = 1:pop_size
% 连续部分:感知时间和功率
T_sensing = system.T_frame * rand() * 0.5; % 感知时间不超过帧长的一半
power_matrix = rand(system.N_channels, system.N_users) * system.P_max;
% 离散部分:信道选择(二进制编码)
channel_selection = rand(system.N_channels, system.N_users) > 0.5;
% 编码为单个向量
individual.continuous = [T_sensing; power_matrix(:)];
individual.discrete = channel_selection(:);
individual.encoded = encode_individual(individual);
population{i} = individual;
end
end
function encoded = encode_individual(indiv)
% 将混合变量编码为统一向量
encoded = [indiv.continuous; double(indiv.discrete)];
end
function indiv = decode_individual(encoded, system)
% 解码统一向量
n_cont = 1 + system.N_channels * system.N_users; % 连续变量数量
indiv.continuous = encoded(1:n_cont);
indiv.discrete = encoded(n_cont+1:end) > 0.5;
indiv.encoded = encoded;
end
3. 局部搜索策略
function offspring = local_search(offspring, rate, system)
% 多种局部搜索策略混合
for i = 1:length(offspring)
if rand() < rate
% 随机选择局部搜索策略
strategy = randi(4);
switch strategy
case 1
% 梯度下降局部搜索(连续变量)
offspring{i} = gradient_based_search(offspring{i}, system);
case 2
% 模拟退火搜索
offspring{i} = simulated_annealing_search(offspring{i}, system);
case 3
% 模式搜索(Pattern Search)
offspring{i} = pattern_search_local(offspring{i}, system);
case 4
% 禁忌搜索(离散变量)
offspring{i} = tabu_search_local(offspring{i}, system);
end
end
end
end
function indiv = gradient_based_search(indiv, system)
% 基于梯度的局部搜索
epsilon = 0.01; % 步长
max_iter = 10;
decoded = decode_individual(indiv.encoded, system);
x0 = decoded.continuous;
for iter = 1:max_iter
% 计算梯度(近似)
grad = approximate_gradient(@(x) local_objective(x, system, decoded.discrete), x0);
% 更新连续变量
x_new = x0 - epsilon * grad;
% 约束处理
x_new = apply_constraints(x_new, system);
% 接受改进解
if local_objective(x_new, system, decoded.discrete) < ...
local_objective(x0, system, decoded.discrete)
x0 = x_new;
else
break;
end
end
% 更新个体
decoded.continuous = x0;
indiv.encoded = encode_individual(decoded);
end
function obj = local_objective(x, system, discrete_vars)
% 局部搜索目标函数
full_vars = encode_individual(struct('continuous', x, 'discrete', discrete_vars));
decoded = decode_individual(full_vars, system);
% 计算加权目标
objectives = multi_objective_function(full_vars, system);
weights = [0.4, 0.2, 0.2, 0.2]; % 权重向量
obj = weights * objectives;
end
4. 目标函数计算
function throughput = compute_throughput(power_matrix, system, T_sensing)
% 计算系统总吞吐量
throughput = 0;
T_transmission = system.T_frame - T_sensing;
for ch = 1:system.N_channels
for u = 1:system.N_users
if power_matrix(ch, u) > 0
% 检测概率和虚警概率
Pd = detection_probability(T_sensing, system);
Pf = false_alarm_probability(T_sensing, system);
% 信道状态概率
P_busy = system.PU_activity(ch);
P_idle = 1 - P_busy;
% 有效传输概率
P_access = P_idle * (1 - Pf) + P_busy * (1 - Pd);
% 信噪比
SNR = power_matrix(ch, u) * system.channel_gains(ch, u) / ...
system.noise_power;
% 香农容量
capacity = system.bandwidth(ch) * log2(1 + SNR);
% 有效吞吐量
throughput = throughput + P_access * capacity * T_transmission;
end
end
end
end
function interference = compute_interference(power_matrix, system)
% 计算对主用户的干扰
interference = 0;
for ch = 1:system.N_channels
PU_present = rand() < system.PU_activity(ch);
if PU_present
for u = 1:system.N_users
% 漏检导致的干扰
Pd = detection_probability(system.T_sensing, system);
interference_ch = (1 - Pd) * power_matrix(ch, u) * ...
system.channel_gains(ch, u);
interference = interference + interference_ch;
end
end
end
% 归一化
interference = interference / (system.N_channels * system.P_max);
end
function fairness = compute_fairness_index(power_matrix, system)
% 计算Jain's公平性指数
user_throughputs = zeros(system.N_users, 1);
for u = 1:system.N_users
user_power = sum(power_matrix(:, u));
if user_power > 0
% 计算用户吞吐量
user_capacity = 0;
for ch = 1:system.N_channels
if power_matrix(ch, u) > 0
SNR = power_matrix(ch, u) * system.channel_gains(ch, u) / ...
system.noise_power;
user_capacity = user_capacity + ...
system.bandwidth(ch) * log2(1 + SNR);
end
end
user_throughputs(u) = user_capacity;
end
end
% Jain's公平性指数
sum_throughput = sum(user_throughputs);
sum_squared = sum(user_throughputs.^2);
if sum_squared > 0
fairness = sum_throughput^2 / (system.N_users * sum_squared);
else
fairness = 0;
end
end
三、完整仿真示例
%% 认知无线网络频谱感知和功率分配的多目标模因优化
clear; clc; close all;
%% 1. 系统参数设置
system = struct();
system.N_channels = 10; % 信道数量
system.N_users = 5; % 次级用户数量
system.T_frame = 100e-3; % 帧时长 (100ms)
system.P_max = 1; % 最大发射功率 (W)
system.noise_power = 1e-12; % 噪声功率
system.interference_threshold = 1e-9; % 干扰阈值
system.energy_weights = 0.1; % 能量权重
% 信道增益(对数正态分布)
system.channel_gains = 10.^(-3 + 0.5*randn(system.N_channels, system.N_users));
% 主用户活动概率
system.PU_activity = 0.2 + 0.6*rand(system.N_channels, 1);
% 信道带宽
system.bandwidth = 1e6 * (1 + rand(system.N_channels, 1)); % 1-2 MHz
%% 2. 模因算法参数
params = struct();
params.pop_size = 100; % 种群大小
params.max_gen = 200; % 最大代数
params.crossover_rate = 0.9; % 交叉概率
params.mutation_rate = 0.1; % 变异概率
params.local_search_rate = 0.3; % 局部搜索概率
params.archive_size = 100; % 归档集大小
%% 3. 运行模因优化算法
fprintf('开始多目标模因优化...\n');
tic;
[best_solution, pareto_front] = memetic_optimization(system, params);
elapsed_time = toc;
fprintf('优化完成,耗时: %.2f 秒\n', elapsed_time);
%% 4. 结果分析
% 解码最优解
decoded_best = decode_individual(best_solution.encoded, system);
T_sensing_opt = decoded_best.continuous(1);
power_opt = reshape(decoded_best.continuous(2:end), ...
system.N_channels, system.N_users);
% 计算各目标值
objectives = multi_objective_function(best_solution.encoded, system);
throughput_opt = -objectives(1); % 转换为最大化值
interference_opt = objectives(2);
energy_opt = objectives(3);
fairness_opt = -objectives(4);
fprintf('\n最优解结果:\n');
fprintf('感知时间: %.3f ms\n', T_sensing_opt*1000);
fprintf('总吞吐量: %.3f Mbps\n', throughput_opt/1e6);
fprintf('总干扰: %.3e W\n', interference_opt);
fprintf('能耗: %.3f J\n', energy_opt);
fprintf('公平性指数: %.3f\n', fairness_opt);
%% 5. 可视化结果
figure('Position', [100, 100, 1400, 800]);
% 子图1: Pareto前沿(3D视图)
subplot(2,3,1);
if size(pareto_front, 1) > 0
scatter3(-pareto_front(:,1), pareto_front(:,2), pareto_front(:,3), ...
'filled', 'MarkerFaceAlpha', 0.6);
xlabel('吞吐量');
ylabel('干扰');
zlabel('能耗');
title('Pareto前沿(3D视图)');
grid on;
rotate3d on;
end
% 子图2: Pareto前沿(吞吐量 vs 干扰)
subplot(2,3,2);
if size(pareto_front, 1) > 0
scatter(-pareto_front(:,1), pareto_front(:,2), 'filled');
xlabel('吞吐量');
ylabel('干扰');
title('吞吐量 vs 干扰');
grid on;
end
% 子图3: 功率分配热图
subplot(2,3,3);
imagesc(power_opt);
colorbar;
xlabel('用户');
ylabel('信道');
title('最优功率分配');
set(gca, 'XTick', 1:system.N_users);
set(gca, 'YTick', 1:system.N_channels);
% 子图4: 用户吞吐量分布
subplot(2,3,4);
user_throughputs = zeros(system.N_users, 1);
for u = 1:system.N_users
for ch = 1:system.N_channels
if power_opt(ch, u) > 0
SNR = power_opt(ch, u) * system.channel_gains(ch, u) / ...
system.noise_power;
user_throughputs(u) = user_throughputs(u) + ...
system.bandwidth(ch) * log2(1 + SNR);
end
end
end
bar(1:system.N_users, user_throughputs/1e6);
xlabel('用户');
ylabel('吞吐量 (Mbps)');
title('用户吞吐量分布');
grid on;
% 子图5: 收敛曲线(如果记录了的话)
subplot(2,3,5);
plot_convergence_curve(); % 假设有这个函数
xlabel('迭代次数');
ylabel('最优目标值');
title('收敛曲线');
grid on;
% 子图6: 目标函数雷达图
subplot(2,3,6);
targets = [throughput_opt/max(throughput_opt,1e-6), ...
1/(interference_opt+1e-6), ...
1/(energy_opt+1e-6), ...
fairness_opt];
targets = targets / max(targets);
radar_plot(targets, {'吞吐量', '干扰抑制', '能效', '公平性'});
title('多目标平衡图');
%% 6. 性能比较
fprintf('\n性能比较:\n');
fprintf('==============================================\n');
fprintf('算法 吞吐量(Mbps) 干扰(dBm) 公平性\n');
fprintf('----------------------------------------------\n');
% 模因算法结果
fprintf('模因算法 %8.2f %8.2f %.3f\n', ...
throughput_opt/1e6, 10*log10(interference_opt*1000), fairness_opt);
% 对比算法:NSGA-II
nsga_results = run_nsga_ii(system, params);
fprintf('NSGA-II %8.2f %8.2f %.3f\n', ...
nsga_results.throughput/1e6, ...
10*log10(nsga_results.interference*1000), ...
nsga_results.fairness);
% 对比算法:粒子群优化
pso_results = run_pso(system, params);
fprintf('PSO %8.2f %8.2f %.3f\n', ...
pso_results.throughput/1e6, ...
10*log10(pso_results.interference*1000), ...
pso_results.fairness);
% 对比算法:贪婪算法
greedy_results = run_greedy_algorithm(system);
fprintf('贪婪算法 %8.2f %8.2f %.3f\n', ...
greedy_results.throughput/1e6, ...
10*log10(greedy_results.interference*1000), ...
greedy_results.fairness);
fprintf('==============================================\n');
%% 7. 敏感性分析
fprintf('\n进行敏感性分析...\n');
analyze_sensitivity(system, params, best_solution);
%% 辅助函数
function radar_plot(values, labels)
% 绘制雷达图
n = length(values);
angles = linspace(0, 2*pi, n+1);
angles = angles(1:end-1);
% 闭合曲线
values = [values, values(1)];
angles = [angles, angles(1)];
% 转换为直角坐标
x = values .* cos(angles);
y = values .* sin(angles);
% 绘制
plot(x, y, 'b-', 'LineWidth', 2);
hold on;
fill(x, y, 'b', 'FaceAlpha', 0.2);
% 坐标轴和标签
for i = 1:n
text(1.2*cos(angles(i)), 1.2*sin(angles(i)), labels{i}, ...
'HorizontalAlignment', 'center', 'FontSize', 10);
end
axis equal;
axis([-1.2, 1.2, -1.2, 1.2]);
set(gca, 'Visible', 'off');
hold off;
end
四、高级扩展功能
1. 动态环境适应
function [adapted_solution] = dynamic_adaptation(current_solution, ...
system_changes, system)
% 动态环境适应机制
% system_changes: 环境变化信息
% 1. 预测变化
predicted_changes = predict_environment_changes(system_changes);
% 2. 调整解
adapted_encoded = current_solution.encoded;
if predicted_changes.PU_increase
% 主用户活动增加,减少感知时间,增加检测概率
decoded = decode_individual(adapted_encoded, system);
decoded.continuous(1) = decoded.continuous(1) * 1.2; % 增加感知时间
adapted_encoded = encode_individual(decoded);
end
% 3. 快速局部搜索
adapted_solution = quick_local_search(adapted_encoded, system);
end
2. 分布式协同优化
function [global_solution] = distributed_memetic_optimization(system, params)
% 分布式模因优化
% 将用户分组
n_groups = 3;
group_solutions = cell(n_groups, 1);
% 并行优化各组
parfor g = 1:n_groups
group_system = create_group_system(system, g, n_groups);
group_solutions{g} = memetic_optimization(group_system, params);
end
% 协同融合
global_solution = coordinate_solutions(group_solutions, system);
end
参考代码 认知无线网络频谱感知和功率分配的多目标模因优化 www.youwenfan.com/contentcnq/85026.html
五、算法改进建议
-
混合策略选择:
- 自适应选择局部搜索策略
- 基于历史成功率调整策略概率
-
并行化加速:
- 使用MATLAB Parallel Computing Toolbox
- 实现异步进化策略
-
约束处理改进:
- 使用可行解保持策略
- 自适应惩罚函数
-
收敛性保证:
- 引入ε-支配概念
- 自适应网格存档

浙公网安备 33010602011771号