上一页 1 ··· 4 5 6 7 8 9 10 11 12 ··· 36 下一页
摘要: 本文我们主要来看看ParameterServerStrategy如何分发计算,也就是ClusterCoordinator如何运作。这是TF分布式的最后一篇。 阅读全文
posted @ 2022-05-21 11:45 罗西的思考 阅读(686) 评论(0) 推荐(0)
摘要: 对于 ParameterServerStrategy V2,我们将从几个方面来研究:如何与集群建立连接,如何生成变量,如何获取数据,如何运行。其中,变量和作用域我们在前文已经研究过,运行在 MirroredStrategy 里面也介绍,所以本文主要看看如何使用,如何初始化。在下一篇之中会重点看看如何分发计算。 阅读全文
posted @ 2022-05-14 08:08 罗西的思考 阅读(1060) 评论(0) 推荐(1)
摘要: 本章我们看看 ParameterServerStrategy,就是第一版代码。研究这个是因为目前工业界还有很多公司在使用,而且其内部机制也比较清晰易懂,值得我们分析。 阅读全文
posted @ 2022-05-08 09:12 罗西的思考 阅读(847) 评论(0) 推荐(0)
摘要: 前一篇我们分析了MirroredStrategy 的基本架构和如何更新变量,本文我们来看看 MirroredStrategy 如何运行。具体希望了解的是,MirroredStrategy 通过什么方式在远端设备节点上运行训练方法(如何分发计算),MirroredStrategy 和我们之前分析的 TF 运行时怎么联系起来?和 master,worker 这些概念怎么联系起来? 阅读全文
posted @ 2022-04-26 08:03 罗西的思考 阅读(722) 评论(0) 推荐(1)
摘要: MirroredStrategy 策略通常用于在一台机器上用多个GPU进行训练。其主要难点就是:如何更新 Mirrored 变量?如何分发计算?本文我们看看其总体思路和如何更新变量。 阅读全文
posted @ 2022-04-19 18:37 罗西的思考 阅读(1522) 评论(0) 推荐(0)
摘要: 在 TensorFlow 之中,分布式变量是在多个设备上创建的变量。Mirrored variable 和 SyncOnRead variable 是两个例子。本文就对分布式变量进行分析。 阅读全文
posted @ 2022-04-14 17:44 罗西的思考 阅读(1274) 评论(0) 推荐(0)
摘要: 我们接下来介绍TensorFlow分布式Strategy的基础,本文会先看看Strategy的类体系和如何处理数据,下一篇看看如何处理变量。 阅读全文
posted @ 2022-04-12 14:21 罗西的思考 阅读(1676) 评论(1) 推荐(0)
摘要: 本文以两篇官方文档为基础来学习TensorFlow如何进行分布式训练,借此进入Strategy世界。 阅读全文
posted @ 2022-04-10 09:50 罗西的思考 阅读(1557) 评论(1) 推荐(1)
摘要: 当计算图在设备之间划分之后,跨设备的 PartitionGraph 之间可能存在着数据依赖关系,因此 TF 在它们之间插入 Send/Recv 节点,这样就完成数据交互。而在分布式模式之中,Send/Recv 通过 RpcRemoteRendezvous 完成数据交换,所以我们需要先看看 TF 之中的数据交换机制 Rendezvous。 阅读全文
posted @ 2022-04-06 15:52 罗西的思考 阅读(1267) 评论(3) 推荐(0)
摘要: 前文中,Master 在流程之中先后调用了 gRPC 给远端 worker 发送命令,即,GrpcRemoteWorker 一共发了两个请求:RegisterGraphAsync,RunGraphAsync,本文我们就来看看 GrpcWorkerService 如何处理。 阅读全文
posted @ 2022-04-01 16:47 罗西的思考 阅读(753) 评论(0) 推荐(0)
上一页 1 ··· 4 5 6 7 8 9 10 11 12 ··· 36 下一页